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e What can we learn about the origin of the EW scale and the EW phase transition
from an in-depth study of SM particles at colliders (HL-LHC)?
e What can we learn about the dynamics of strong interactions in different regimes?
e How can we build a complete program of BSM searches which includes
both model-specific and model-independent explorations at high scales?
[Narain et al.] arXiv:2211.11084
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Messages from the PS5 report

Decipher Explore [lluminate
the New the
Quantum Paradigms Hidden
Realm in Physics Universe
Elucidate the Mysteries Search for Direct Evidence Determine the Nature
of Neutrinos of New Particles of Dark Matter
Reveal the Secrets of Pursue Quantum Imprints Understand What Drives
the Higgs Boson of New Phenomena Cosmic Evolution

1. As the highest priority independent of the budget scenarios, complete construction
projects and support operations of ongoing experiments and research to enable
maximum science. This includes High-Luminosity LHC, the first phase of Deep Underground
Neutrino Experiment (DUNE) and Proton Improvement Plan Il, the Rubin Observatory to carry
out the Legacy Survey of Space and Time (LSST).

2. Construct a portfolio of major projects that collectively study nearly all fundamental
constituents of our universe and their interactions, |[...]

c. Offshore Higgs factory, realized in collaboration with international partners, [...]

[...]
4. Support a comprehensive effort to develop the resources — theoretical, computational
and technological — essential to our 20-year vision for the field. |[...]

[..]

https://www.usparticlephysics.org/
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Perturbative QCD - Connecting Theory & Experiment

e QCD is arich theory with different phenomena at different scales
e Experimental precision at LHC unprecedented, theoretical precision must keep up

Any future collider will require even higher precision

Fermilab Theory Division provides
e New techniques for performing state of the art calculations

e Software that is used directly by collider experiments
e Continuous support of these activities & associated codes
e Activities that engage with the experimental community:
o LHC Higgs Cross Section WG, ATLAS / CMS consulting, ... V
o Joint workshops & schools (CTEQ/MCnet, HCPSS, ...)

o Community workshops & reports, e.g. [Campbell et al.] arXiv:2203.11110
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https://arxiv.org/abs/2203.11110

Activities
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Activities

Fixed-order perturbative QCD
MCFM, Pepper
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Stefan Hoche

Joshua Isaacson
Benobit Assi

Max Knobbe (starting ‘24)
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Activities

Semi-analytical Resummation

MCFM, ResBos
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Parton-shower Resummation
Sherpa, Alaric, Vincia

John Campbell
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Stefan Hoche
Joshua Isaacson
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Activities

Particle-level Simulation
Sherpa

e Stefan Hoche
e Joshua Isaacson
e Max Knobbe (starting ‘24)
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Precision measurements at colliders

[CDF Collaboration]

e CDF’s measurement of the W-boson mass emphasizes :
Science, 376, 6589, 170-176

importance of highest precision calculations for extraction
of SM parameters at colliders

e Fermilab theory provides two of the most important tools
for predictions of the W and Z p_ spectrum:

e ResBos2 — N?LO fixed order, N3LL resummed [Isaacson et al ]
e MCFM — N3LO fixed order, N*LL resummed [Campbell et al ]

S 13‘?1.' W* 5.02 TeV

8 F e Control of perturbative uncertainties

T or HH<H« at an unprecedented level

8 orTinl e Codes made available to ATLAS and CMS

for use in ongoing measurements
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e Future N3LO+NALL analysis will examine

o]
fe)
g
g 08 angular coefficients, input for m  analysis
0.6 1 b ] o S e Also planning a comprehensive study of
R I non-perturbative effects, including use of LQCD
v

constraints in ResBos, MCFM and Sherpa

[Campbell, Neumann] arXiv:2308.15382
4& Fermilab
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https://arxiv.org/abs/2308.15382

[ATLAS
Collaboration]
September 2023
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e-art calculations for experiments

[ATLAS
Collaboration]
March 2024

e Important to ensure state-of-the-art predictions are available to experiments
and can be used by them to provide reliable predictions — public MCFM code
o Forinstance, has resulted in input to most precise collider measurement of the
strong coupling by ATLAS, reference single-top cross sections in LHC Top WG

e Plan to extend to other high-interest calculations: gg — Higgs at N>LO+N4LL
e Further extensions to NLO electroweak corrections and event shapes at FCC-ee

2% Fermilab



Exploring the Unknown - The Higgs Potential

e Higgs self interaction is key to
understanding of EW sector

e Measurement will require careful
combination of many analyses
with full HL-LHC data set

e Heavy flavor channels needed

for high statistical significance
e.g. via “ABCD” method Image Credit: Nat Rev Phys 3, 608—624 (2021)

Higgs
potential

Our Stable

vacuum
3 ?

Metastable

A Higgs
field

' e Predictions for heavy quark production as
part of inclusive heavy plus light flavor jets
> difficult to obtain at high precision
> . ® Precise extraction of / limit setting on
3 3 triple Higgs coupling depends crucially
rgé ol t'@ on understanding of all final states
= o . & e Multiple approaches co-developed at
7, I - < Fermilab & implemented in simulations
wll * ' - MCFM [Campbell et al.]
ob WW 99 T CC 77 vy zy wwo 10° - Sherpa [SH et al |

higgs | decay
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Parton showers at higher precision

e Parton showers are the core component of collider event generators since PETRA
e Recent analyses revealed drawbacks of dipole-like algorithms as implemented in all

major LHC event generators — provably not NLL precise, even in Drell-Yan events
e Of utmost importance for a potential FCC-ee

e Fermilab theory develops new algorithm for LHC event generator Sherpa — Alaric
o Seamless integration with existing multi-jet merging framework
o Currently working on generic NLO matching

b quark fragmentation function f (x‘é”'eak)
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2F = . 1o E aric 3
= of HQ evolution ; = b
(relevant for Higgs R ‘
95 F 3 107 e T T 7
>‘068:_:H:H= T E measurementS) £ 13: -
$30% I Bww ™| e Extensionto NNLL 5 o —frtprsmmesiiy
e50020 - being worked on < 88 El L L]
0eRf NLO correctionstoPS = = 7 ™ & = 7 7
1 10 . [Herren et al.] arXiv:2208.06057
[ATLAS] arXiv:2402.13052 v [ASSi, SH] arXiv:2307.00728
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https://arxiv.org/abs/2208.06057
https://arxiv.org/abs/2307.00728
https://arxiv.org/abs/2402.13052

Towards fully differential NNLO-PS matching

ok €F L amAsandcus o
e Extraction of Higgs Yukawa couplings o £ LHCRun 1 Preminay ok
at FCC-ee will depend on precise modeling ! L e TN
of light / heavy flavor jets at hadron level 3 20 S s
(see also Christoph’s talk yesterday) b 1 CY E
e Various techniques currently available ,"m 1] S B
to match parton showers to NNLO Sl CAREERY
e Fermilab theory aims at generic, fully 2:10° q)
differential solution, based on a parton W 5-10° _ _
shower that uses the exact fixed-order [C. Paus] this meeting
counterterms (similar to MC@NLO) T

—— H — bb NNLO+PS (ViNcIA)
H — bbg NLO (EERAD3)

e First steps towards solution
[Campbell et al.] arXiv:2108.07133

o Formulation of the method -
o Emission generation in Vincia (23, 2>4) -+
o Test of double-soft / triple-collinear limits
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" [Preuss] HP2 2022
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The future of experimental simulation campaigns

11

Luminosity [cm2s7]

Projected evolution of LHC computing
resources sees cost of event generation

on par with detector simulation

LHC measurements in danger of being

limited by Monte Carlo statistics
Even more severe at a potential FCC-ee

FNAL theory collaborates with ANL MCS

and SWIFT-HEP to solve these problems

[Bothmann et al.] arXiv:2309.13154, arXiv:2209.00843

https://indico.cern.ch/event/1312061
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Portabi

lity of perturbative QCD calculations

e Efficient usage of HPC systems in U.S. and abroad can solve computing bottlenecks
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Portability of perturbative QCD calculations

13

LHC event simulations face significant
challenges in modern computing landscape:
many vendors & heterogeneous hardware
Currently none of the major programs

runs on any modern computing platform

(at LHC-required production-level quality)

Fermilab co-developed first parton-level
generator, capable of utilizing all modern
hardware with help of DOE-funded Kokkos
portability software — Pepper

Scalable solution for event production

at leading order pQCD, developed in
continuing collaboration with ANL MCS

Pepper is now being extended to include
tree-level like components at NLO QCD
Will provide framework for implementation
of next-generation MCFM, to be developed

during the next few years ¢

ugh Advanced Computing

Unweighted event rate [1/h]

Normalized event rate

[ —@— Full event generation

- gg — tigggg at V8 = 14 TeV
[ 4h = pp =mi

‘Write-out disabled

PEPPER MC

pr,; > 20GeV, |y;| <5

Polaris @ ALCF, 4 ranks / node ]
1 x AMD EPYC Milan / node
4 x NVidia A100 / node

HPE Slingshot 10 4
L PR | L L L PR E

10° 10
MPI Ranks

pp — e et +njets at /s = 13 TeV

= —@— 2xSkylake8180
E -0~ V100
e —W— A100

F —— 1/2x MI250

T T T T T T
pL,; >20GeV, |n;| <5, AR;; > 0.4

66 GeV < m_i_- < 116 GeV

o T R |
HRp = Hp = Mgz

PEPPER MC

H100
MI100

PVC

0 1 2 3 4 5

[Bothmann et al.] arXiv:2311.06198
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Efficiency of 1-loop amplitude calculations

Speedup (Loop ME)

e Loop amplitudes must be evaluated in an efficient e e
and stable manner to provide parametric precision ‘@ RESENCR
o Needed for NLO merging & NNLO fixed order  ““ e e —
o Direct translation to research $ savings ———
at the high-luminosity LHC -
e Can be realized by using analytic matrix elements = e
rather than off-the-shelf general-purpose tools e — -
o Cutting edge calculations use methods i
from algebraic geometry and number theory e e
e Fermilab theory works on two-pronged approach: ‘f“{':*
o Direct analytic calculations for pressing LHC T
Higgs needs, e.g. Higgs pairs+jets r
o Dedicated implementation of unitarity method R e
to reconstruct compact, one-loop amplitudes :é.
using finite-field techniques and twistors e
e o ~+  OpenLoops2/MCFM
i = » Recola2/MCFM

- MadLoop/MCFM

10° 10! 102 10° 10*
Ratio

[Campbell et al.] arXiv:2107.04472
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Numerical stability of perturbative calculations

15

Perturbative calculations in massless gauge
theories develop infrared singularities, due to
degenerate asymptotic states (KLN theorem)
Most numerical calculations depend on
phase-space slicing / subtraction methods
which evaluate matrix elements in / near
critical regions of phase space

Fermilab theory provided first systematic
understanding of numerically unstable
structures, both in Green’s functions

and in vertices / external wave functions
Can now obtain better numerical stability
with double precision arithmetic than
with previous implementations based on
quadruple precision arithmetic
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[Campbell et al.] arXiv:2406.07671
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Physics program going forward

All goals aligned with recommendations of P5, see also [Campbell et al.] arXiv:2203.11110 _
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Summary

Fermilab theory leads efforts to develop precision probes and tools for the LHC
Addresses need to keep pace with rapidly shrinking experimental uncertainties
Extract maximum return on LHC investment, as well as prepare for FCC-ee

Broad application across the program: Higgs, DM, BSM, future colliders
New and exciting synergies with other efforts, e.g. MCs for neutrino physics

This research direction benefits greatly from the laboratory setting
o Not widely supported in U.S. university groups
o Utilizing a wealth of local expertise and resources
(theory, experiment, computing) both at Fermilab & ANL (ALCF)
Enhances local experimental hub (theory resource)

Future work will build on existing strengths and recent progress,
targeting better theoretical tools from a holistic perspective,
exploiting the synergies between individual research programs
Growing interest / involvement in FCC-ee, EIC and beyond
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